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Abstract

In this paper, shape optimization is used to regulate the vibrations of an Euler–Bernoulli beam having constant material

volume. This is achieved by varying appropriately the beam cross-section and thus its stiffness and mass properties along

its length, so that the beam vibrates with its minimum, maximum or a prescribed eigenfrequency as well as with the

minimum or maximum difference between two successive eigenfrequencies. The problem is reduced to a nonlinear

optimization problem under equality and inequality constraints as well as specified lower and upper bounds. The

evaluation of the objective function requires the solution of the free vibration problem of a beam with variable mass and

stiffness properties. This problem is solved using the analog equation method (AEM) for hyperbolic differential equations

with variable coefficients. Besides its accuracy, this method overcomes the shortcoming of a FEM solution, which would

require resizing of the elements and re-computation of their stiffness and mass properties during the optimization process.

Certain example problems are presented, which illustrate the method and demonstrate its efficiency.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Shape optimization is a subject which has attracted the interest of the researches for many years. It refers to
the optimal design of the shape of structural components and is of great importance in structural and
mechanical engineering. The problem consists in finding the best shape of a structural component under
certain loading, in order to have minimum weight, or uniformly distributed equivalent stresses or even to
control the deflections of the structural components. A shape optimization procedure is an iterative process in
which repeated improvements are carried out over successive designs until the optimal design is acceptable.
There is an extensive literature on the subject, especially, in the area of structural dynamics [1] on various
mathematical and computational techniques which can be applied, including finite element model updating [2]
and the use Volterra series [3].

In this paper, we consider the problem of determining the optimum shape of an Euler–Bernoulli beam with
a given material volume to regulate its vibratory motion. Namely, we look for the variation law of the cross-
section along the beam length so that the beam vibrates with the minimum, the maximum or a prescribed
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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eigenfrequency. The problem of minimization or maximization of the difference between two successive
eigenfrequencies is also encountered. From both the mathematical and the engineering point of view, it is a very
difficult problem. There is an extended literature on the subject which is however limited only to maximization of
the fundamental eigenfrequency [4]. The available analytical [4,5] or numerical solutions [6,7], are restricted only
to beams with similar cross-sections, namely constrained by the relation IðxÞ ¼ aAðxÞn ðn ¼ 1; 2; 3Þ, with AðxÞ

being the area of the cross-section, IðxÞ its moment of inertia and a a specified constant. All these solutions
ignore any restrictions that should be imposed on the rate of change of the cross-section as well as lower bounds
resulting from serviceability reasons. It is noteworthy that some optimum solutions lead to zero values of the
area A for certain cross-sections as well as to cross-sectional variations for which the beam theory is not valid.
These results are unrealistic and, therefore, cannot be used for design. An attempt to get realistic results with
FEM is by considering piecewise linear variation in height [8].

In this investigation, the vibratory motion of an Euler–Bernoulli beam with constant volume of the material
is regulated by distributing appropriately its mass and stiffness properties along the length. Hence, we seek the
variation of the beam cross-section so that the beam vibrates with its minimum, maximum or a prescribed
eigenfrequency as well as with the minimum or maximum difference between two successive eigenfrequencies.
This problem is reduced to a nonlinear optimization problem under equality and inequality constraints as well
as specified lower and upper bounds. The equality constraint results from the condition that the volume of the
material is kept constant, while the upper and lower bounds result from the condition that the rate of change
of the beam cross-section ensures the validity of the Euler–Bernoulli beam theory for beams with variable
cross-section. Finally, the inequality constraint results from serviceability requirements, e.g. the cross-section
of the beam should not be less than a certain value. The optimization problem is solved using the successive
quadratic programming algorithm and a finite difference gradient. The evaluation of the objective function
requires the solution of the free vibration problem of a beam with variable mass and stiffness properties
accepting as design variables a set of nodal values, which accurately define the shape of the beam and its rate
of variation. This is achieved, thanks to an efficient method for vibration analysis of beams with variable
properties. The method is based on the concept of the analog equation [9] as it was developed for beams with
variable properties [10]. According to this method, the hyperbolic differential equation with variable
coefficients is replaced by an equivalent one pertaining to the transverse deformation of a substitute beam with
unit bending stiffness subjected to a quasi-static fictitious load distribution under the same boundary
conditions. This method overcomes the drawback of FEM solutions which requires resizing of the beam
elements and re-evaluation of their stiffness and mass properties during the iteration process [8]. Several
example problems are presented, which illustrate the merits of the method as well as its applicability and
efficiency. Moreover, interesting conclusions are drawn regarding the optimum vibrating shapes of the beams.

2. Statement of the problem

2.1. The shape optimization problem for the beam

We consider an Euler–Bernoulli beam with variable cross-section A ¼ AðxÞ and material density r̄. The
beam is subjected to prescribed boundary conditions. Our problem is to establish the cross-sectional variation
so that the beam vibrates with the minimum, the maximum, a prescribed eigenfrequency or with the minimum,
maximum difference between two successive eigenfrequencies, while the volume of the material of the beam
Vpr remains constant. Without restricting the generality the problem of minimization, maximization of the
difference between the first two eigenfrequencies is considered. The resulting beam should have no abrupt
change of the cross-section so that the Euler beam theory is valid. This requirement imposes the condition that
the rate of change of the variation of the cross-section area hðxÞ is not greater than a certain prescribed value,
that is

dh=dx ’ Dh=DxpZ. (1)

In order to stay away from these inequality constraints, it is convenient to take as design variables the cross-
section h0 at the end x ¼ 0 and the N þ 1 differences of the adjacent cross-sections Dhk ¼ hk � hk�1 ðk ¼

1; 2; . . . ;N þ 1Þ Dx apart. Thus, the vector of the N þ 2 design variables is h ¼ h0;Dh1;Dh2; . . . ;DhNþ1

� �T
and
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the cross-section at the i nodal point is expressed as

hi ¼ h0 þ
Xi

k¼1

Dhk; i ¼ 1; 2; . . . ;N þ 1. (2)

Using the trapezoidal rule to evaluate the volume of the beam, the equality constraint is written as

Dx
1

4
h0 þ

3

4
h1 þ

XN�1
i¼2

hi þ
3

4
hN þ

1

4
hNþ1

 !
� Vpr ¼ 0. (3)

Finally, the inequality constraint from the serviceability may be written as

min hiXe; i ¼ 0; 1; 2; . . . ;N þ 1. (4)

According to the scope of this paper, the objective function for the beam is

minimize o1 hð Þ, (5a)

maximize o1 hð Þ, (5b)

minimize 1� o1 hð Þ=opr
1

� �2
, (5c)

minimize o2 hð Þ � o1 hð Þ½ �, (5d)

maximize o2 hð Þ � o1 hð Þ½ �. (5e)

to vibrate with its minimum, maximum, a prescribed fundamental eigenfrequency opr
1 or with the minimum,

maximum difference between the first two eigenfrequencies, respectively. It is apparent that omin
1 and omax

1

should be first established before specifying opr
1 :

2.2. The vibration problem for the beam with variable cross-section

The evaluation of the objective function requires the solution of the vibration problem of a beam with
variable stiffness and mass properties. This problem is stated as follows.

We consider an initially straight beam of length l having variable bending stiffness D ¼ DðxÞ ¼ EIðxÞ, which
results from variable cross-section. The x-axis coincides with the neutral axis of the beam, which is bent in its
plane of symmetry xz under the action of the distributed load p ¼ pðx; tÞ in the z-direction. We assume that
there is no abrupt variation in cross-section of the beam so that the expression for bending moment derived for
beams of constant cross-section applies with sufficient accuracy to this case also. Hence, if w ¼ wðx; tÞ is the
transverse deflection of the beam the bending moment and the shear force are given as

M ¼ �Dw;xx, (6a)

Q ¼M ;x ¼ �D;xw;xx �Dw;xxx (6b)

and the equation of motion is written as

r €wþ L wð Þ ¼ p x; tð Þ, (7)

where

L wð Þ ¼ Dw;xxxx þ 2D;xw;xxx þD;xxw;xx (8)

with r ¼ r xð Þ ¼ r̄A xð Þ being the mass density per unit length of the beam. The beam is subjected to the
boundary conditions, which may be written as

b1w 0; tð Þ þ b2Qð0; tÞ ¼ b3 and b̄1w l; tð Þ þ b̄2Qðl; tÞ ¼ b̄3, (9a,b)

g1w;x 0; tð Þ þ g2Mð0; tÞ ¼ g3 and ḡ1w;x l; tð Þ þ ḡ2Mðl; tÞ ¼ ḡ3 (10a,b)
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and also to the initial conditions

w x; 0ð Þ ¼ ~wðxÞ; _w x; 0ð Þ ¼ _~wðxÞ, (11a,b)

where bk; b̄k; gk; ḡk ðk ¼ 1; 2; 3Þ are given constants and ~wðxÞ; _~wðxÞ are prescribed functions. Eqs. (9) and (10)
describe the most general boundary conditions associated with the problem and can include elastic support or
restrain. For example, at an elastically restrained end, say at x ¼ 0, the boundary condition (9a) becomes,
kw 0; tð Þ þQð0; tÞ ¼ P, that is, b1 ¼ k; b2 ¼ 1 and b3 ¼ P; k is the stiffness of the spring and P the external
applied force in the z-direction.
3. The AEM solution for the vibration problem

Eq. (7) is solved using the analog equation method (AEM), which for the problem at hand is applied as
follows: let w ¼ wðx; tÞ be the sought solution of Eq. (7), which is four times differentiable in 0; lð Þ.
Differentiation of w yields

w;xxxx ¼ b x; tð Þ. (12)

Eq. (12) describes the response of a beam with constant unit stiffness subjected to the fictitious time dependent
load b x; tð Þ: It indicates that the solution of Eq. (7) can be established by solving Eq. (12) under the conditions
(9)–(10) and (11), provided that the fictitious load distribution b is first determined. Note that Eq. (12) is quasi-
static, that is the time considered as a parameter. Eq. (12) is referred to as the analog equation to Eq. (7). The
fictitious load is established by developing a procedure based on the boundary integral equation method for
one-dimensional problems [10]. Thus, the integral representation of the solution of Eq. (12) is written as

wðx; tÞ ¼ c1x
3 þ c2x2 þ c3xþ c4 þ

Z l

0

G x; xð Þb x; tð Þdx, (13)

where ci ¼ ciðtÞ ði ¼ 1; 2; . . . ; 4Þ are integration constants to be determined from the boundary conditions
and Gðx; xÞ is the fundamental solution of Eq. (12) (free space Green’s function), that is a particular singular
solution of the equation

G;xxxx ¼ d x� xð Þ (14)

with dðx� xÞ being the Dirac function. Integrating Eq. (14) yields

G ¼ 1
12

x� xj j x� xð Þ
2. (15)

The derivatives of w are obtained by direct differentiation of Eq. (13). This yields

w;x x; tð Þ ¼ 3c1x
2 þ 2c2xþ c3 þ

Z l

0

G;x x; xð Þb x; tð Þdx, (16a)

w;xx x; tð Þ ¼ 6c1xþ 2c2 þ

Z l

0

G;xx x; xð Þb x; tð Þdx, (16b)

w;xxx x; tð Þ ¼ 6c1 þ

Z l

0

G;xxx x; xð Þb x; tð Þdx, (16c)

w;xxxx x; tð Þ ¼ b x; tð Þ. (16d)

In the conventional BEM, the load distribution b x; tð Þ is known and Eqs. (13), (16) are combined with the
boundary conditions (9)–(10) to yield the unknown arbitrary constants ciði ¼ 1; 2; . . . ; 4Þ. This, however,
cannot be done here since b x; tð Þ is unknown. For this purpose, an additional integral equation is derived,
which permits the establishment of b x; tð Þ. This equation results by applying the operator rðd2=dt2Þ þ L to
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Eq. (13). This yields

r €c1x
3 þ €c2x

2 þ €c3xþ €c4 þ

Z l

0

G x; xð Þ €b x; tð Þdx
� �

þ c1L x3
� �
þ c2L x2

� �
þ c3L xð Þ þ c4L 1ð Þ þ

Z l

0

L G x; xð Þð Þb x; tð Þdx ¼ p x; tð Þ. ð17Þ

Eq. (17) is a domain integral equation for bðx; tÞ, which can be solved numerically as follows.
The interval 0; lð Þ is divided into N equal elements (see Fig. 1) on which bðx; tÞ is assumed to vary according

to a certain law (constant, linear, parabolic, etc). The constant element assumption is employed here, because
the numerical implementation becomes very simple and the obtained numerical results are very good.

After discretization of Eq. (13) we obtain

wðx; tÞ ¼
X4
j¼1

x4�jcjðtÞ þ bðxjÞ
XN

j¼1

Z
j

Gðx; xÞdx (18)

or

wðx; tÞ ¼ HðxÞcþGðxÞb, (19)

where GðxÞ is an 1�N known matrix originating from the integration of the kernel Gðx; xÞ on the elements;
HðxÞ ¼ x3 x2 x 1

� �
; b ¼ b1; b2; . . . ; bNf g

T is the vector containing the values of the fictitious load at the
nodal points and c ¼ fc1; c2; c3; c4g

T. Similarly, we obtain for Eqs. (16a)–(16c)

w;xðx; tÞ ¼ HxðxÞcþGxðxÞb, (20a)

w;xxðx; tÞ ¼ HxxðxÞcþGxxðxÞb, (20b)

w;xxxðx; tÞ ¼ HxxxðxÞcþGxxxðxÞb, (20c)

w;xxxxðx; tÞ ¼ b, (20d)

where GxðxÞ; GxxðxÞ; GxxxðxÞ, are 1�N known matrices, originating from the integration of the derivatives
of the kernel Gðx; xÞ and HxðxÞ; HxxðxÞ; HxxxðxÞ are 1� 4 known matrices resulting from the differentiation
of HðxÞ:

First, Eqs. (19) and (20) are applied to the end nodal points x ¼ 0 and x ¼ l. This yields

wð0; tÞ ¼ Hð0ÞcþGð0Þb; wðl; tÞ ¼ HðlÞcþGðlÞb, (21a)

w;xð0; tÞ ¼ Hxð0ÞcþGxð0Þb; w;xðl; tÞ ¼ HxðlÞcþGxðlÞb, (21b)

w;xxð0; tÞ ¼ Hxxð0ÞcþGxxð0Þb; w;xxðl; tÞ ¼ HxxðlÞcþGxxðlÞb, (21c)

w;xxxð0; tÞ ¼ Hxxxð0ÞcþGxxxð0Þb; w;xxxðl; tÞ ¼ HxxxðlÞcþGxxxðlÞb. (21d)
Nodal points

l

N21

x

0 1N +

Fig. 1. Descretization of the interval and distribution of the nodal points.
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Substituting Eqs. (21) into the boundary conditions (9)–(10) gives

b1Hð0Þ � b2D;x 0ð ÞHxxð0Þ � b2Dð0ÞHxxxð0Þ

b̄1HðlÞ � b̄2D;x lð ÞHxxðlÞ � b̄2D;xðlÞHxxxðlÞ

g1Hxð0Þ � g2D 0ð ÞHxxð0Þ

ḡ1HxðlÞ � ḡ2D lð ÞHxxðlÞ

2
66664

3
77775cþ

b1Gð0Þ � b2D;x 0ð ÞGxxð0Þ � b2Dð0ÞGxxxð0Þ

b̄1GðlÞ � b̄2D;x lð ÞGxxðlÞ � b̄2D;xðlÞGxxxðlÞ

g1Gxð0Þ � g2D 0ð ÞGxxð0Þ

ḡ1GxðlÞ � ḡ2D lð ÞGxxðlÞ

2
66664

3
77775b ¼

b3
b̄3
g3
ḡ3

2
66664

3
77775.

(22)

Solving Eq. (22) for c yields

c ¼ Ebþ e (23)

in which E is a known 4�N rectangular matrix and e is a known 4� 1 vector.
Subsequently, applying Eq. (17) to the N interior nodal points yields

qH€cþ qG€bþ Scþ Rb ¼ p. (24)

The matrices S and R are evaluated from the expressions

R ¼ Dþ 2DxGxxx þDxxGxx, (25)

S ¼ HxxDxx þ 2HxxxDx, (26)

where G ¼ GðxiÞ; Gxx ¼ GxxðxiÞ; Gxxx ¼ GxxxðxiÞ; i ¼ 1; 2; . . . ;N; are N �N known matrices originating
from the integration of the kernel function, and its derivatives on the elements; H ¼ HðxiÞ; Hx ¼

HxðxiÞ; Hxxx ¼ HxxxðxiÞ; i ¼ 1; 2; . . . ;N ; are also N � 4 known matrices; D;Dx;Dxx are N �N known
diagonal matrices including the values of the stiffness and its derivatives at the nodal points and p is the vector
containing the values of the external distributed load at the nodal points.

Eq. (23) is used to eliminate c from Eq. (24). This yields

M€bþ Kb ¼ F, (27)

which is the semidiscretized equation of motion with

M ¼ q GþHEð Þ, (28a)

K ¼ DþDxx Gxx þHxxEð Þ þ 2Dx Gxxx þHxxxEð Þ, (28b)

F ¼ p� DxxHxx þ 2DxHxxxð Þe (28c)

playing the role of the generalized mass matrix, stiffness matrix and force vector, respectively. The associated
initial conditions result from Eqs. (11a,b). Thus, we have

b 0ð Þ ¼ GþHEð Þ
�1 ~w0 �Heð Þ; _b 0ð Þ ¼ GþHEð Þ

�1 _~w0. (29)

Eq. (27) can be solved numerically to establish the vector bðtÞ and backsubstitution in Eq. (23) gives c. Once
bðtÞ and c are known, the deflection and its derivatives are established from Eqs. (19) and (20).

Free vibrations: For free vibrations it is F ¼ 0; and by setting bðtÞ ¼ Be�iot Eq. (27) becomes

ð�o2Mþ KÞB ¼ 0, (30)

which is a generalized eigenvalue problem of linear algebra from which the eigenfrequencies o and
eigenvectors B are established. The eigenvectors may be used in Eq. (19) to establish the mode shapes of the
beam.

4. Numerical examples

On the basis of the procedure described in previous section a FORTRAN program has been written for
establishing the optimum vibrating shapes. The optimization procedure was carried out using the subroutine
DNCONF from the IMSL library. This subroutine uses the successive quadratic programming (SQP) method
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and is based on the subroutine NLPQL developed by Schittkowski [11]. The required gradients of the
objective functions and constraints are calculated internally using the finite difference method. In all examples,
the results have been obtained using N ¼ 51 elements.

Example 1. Beam with a similar circular cross-section: For the comparison of the results with those available
from the literature, the maximization of the fundamental eigenfrequency of a simply supported beam having
initially a constant circular cross-section has been studied. The employed data are l ¼ 1:0m, initial radius
r ¼

ffiffiffiffiffi
40
p

mm and IðxÞ ¼ prðxÞ4=4 ¼ AðxÞ2=4p. In Table 1 the computed ratio omax
1 =o1 for various values of

the parameter Z is shown as compared with those obtained from an analytical [5] and a FEM [6] solution
without restriction on the rate of change. As it was anticipated, for large values of Z the computed value
coincides with the analytical one.

Example 2. Steel beam with a rectangular cross-section: The optimum vibrating shapes of a steel beam with
length l ¼ 5:0m having initially a constant rectangular cross-section b� h, has been studied. The employed
data are: E ¼ 2:1� 108 kN=m2; b ¼ 0:1m; h ¼ 0:30m and r̄ ¼ 7850 kg=m3. Three types of boundary
conditions are considered (i) fixed–fixed ðo1 ¼ 400:85 rad=sÞ, (ii) simply supported ðo1 ¼ 176:83 rad=sÞ and
(iii) cantilever ðo1 ¼ 63:00 rad=sÞ; o1 is the fundamental eigenfrequency of the beam with constant rectangular
cross-section. In all three cases the width b and the volume of the beam V ¼ bhl were kept constant. Hence,
the design parameters designate the height of the beam at the nodal points. The results obtained for Z ¼ 0:1
and e ¼ 0:1h are shown in Figs. 2–4.

Example 3. Steel beam with an I-section: The optimum vibrating shapes of a steel I-section beam with length
l ¼ 10:0m, has been studied. The initial cross-section is constant and it is constructed from a pair of identical
flange plates b ¼ 100mm wide by tf ¼ 15mm thick and a web plate tw ¼ 15mm thick with height hw ¼

500mm (see Fig. 5). The other data are: E ¼ 2:1� 108 kN=m2; r̄ ¼ 7850 kg=m3. Three types of boundary
conditions are considered (i) fixed–fixed ðo1 ¼ 212:87 rad=s; o2 ¼ 586:93 rad=sÞ, (ii) simply supported ðo1 ¼

93:90 rad=s; o2 ¼ 375:69 rad=sÞ and (iii) cantilever ðo1 ¼ 33:45 rad=s; o2 ¼ 209:71 rad=sÞ; o1; o2 are the
first two eigenfrequencies of the constant section. In all three cases the volume of the material, i.e. V ¼

ðtwhw þ 2tf bÞl; was kept constant. For a realistic construction of the optimum beam only the web height hw

was allowed to vary. Thus, the design parameters are the height of the beam at the nodal points. The obtained
results for e ¼ 0:1hw are shown in Figs. 6–14. More specifically, in Figs. 6–8 the dependence of the ratios
Table 1

Example 1: The ratio omax
1 =o1 for various values of Z

Proposed [5] [6]

Z ¼ 0:20 Z ¼ 0:30 Z ¼ 0:40 Z ¼ 0:50 No constraint on Z

1.049 1.058 1.063 1.066 1.066 1.060

0 1 2 3 4 5
x (m)

-0.2

-0.1

0

0.1

0.2

h 
(m

)

Fig. 2. Example 2: Optimal height profiles of the fixed–fixed beam. —— o1, —J— omin
1 ¼ 1:46%o1, —K— opr

1 ¼ 80:00%o1:
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0 1 2 3 4 5
x (m)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

h 
(m

)

Fig. 3. Example 2: Optimal height profiles of the simply supported beam. —— o1, —J— omin
1 ¼ 3:20%o1; —K— opr

1 ¼ 90:00%o1:

0 1 2 3 4 5
x (m)

-0.4

-0.2

0

0.2

0.4

h 
(m

)

Fig. 4. Example 2: Optimal height profiles of the cantilever beam. —— o1, —J— omin
1 ¼ 13:18%o1; —K— opr

1 ¼ 60:00%o1:

z

y

wt

wh

ft

ft

b

Fig. 5. Example 3: Cross-section of the Steel I-section beam.
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omin
1 =o1 and omax

1 =o1 on the height rate of change Z is presented, while in Figs. 9–11 the profiles of the upper
half of the height variation along the beam axis for various values of Z are shown. Moreover, the profiles of the
upper half of the height variation along the beam axis are shown in Figs. 12–14 for the minimum, maximum
difference of the first two eigenfrequencies.
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0 0.05 0.1 0.15
η

0

0.5

1

1.5

ω 1
max/ω 1

ω 1
min/ω 1

 

Fig. 6. Example 3: Dependence of the ratios omin
1 =o1 and omax

1 =o1 on the height rate of change Z for the fixed–fixed beam.

0 0.05 0.1 0.15
η

0

0.5

1

1.5

ω 1
max/ω1

ω 1
min/ω1

Fig. 7. Example 3: Dependence of the ratios omin
1 =o1 and omax

1 =o1 on the height rate of change Z for the simply supported beam.

0 0.025 0.05 0.075 0.1
η

0

0.5

1

1.5

2

2.5

ω 1
max/ω1

ω 1
min/ω1

Fig. 8. Example 3: Dependence of the ratios omin
1 =o1 and omax

1 =o1 on the height rate of change Z for the cantilever beam.
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0 2 4 6 8 10
x (m)

0

0.1

0.2

0.3

0.4

0.5

h
/2

(m
)

η =0.11
η =0.13

η =0.15

η =0.05
η =0.03

η =0.01

Fig. 9. Example 3: Profiles of the upper half of the height for various values of Z for the fixed–fixed beam. —J— omin
1 ; —K— omax

1 :

0 2 4 6 8 10
x (m)

0

0.1

0.2

0.3

0.4

0.5

h
/2

(m
)

η =0.11
η =0.13

η =0.15

η =0.01
η =0.02

η =0.03

Fig. 10. Example 3: Profiles of the upper half of the height for various values of Z for the simply supported beam. —J— omin
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Fig. 11. Example 3: Profiles of the upper half of the height for various values of Z for the cantilever beam. —J— omin
1 ; —K— omax

1 :
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Fig. 13. Example 3: Profiles of the upper half of the height for the simply supported beam. Height rate of change Z ¼ 0:07. —J—

o2 � o1ð Þ
min
¼ 78:90% o2 �o1ð Þ, —K— o2 � o1ð Þ

max
¼ 130:10% o2 �o1ð Þ:
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Fig. 14. Example 3: Profiles of the upper half of the height for the cantilever beam. Height rate of change Z ¼ 0:05. —J—

o2 � o1ð Þ
min
¼ 37:96% o2 �o1ð Þ, —K— o2 � o1ð Þ

max
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Fig. 12. Example 3: Profiles of the upper half of the height for the fixed–fixed beam. Height rate of change Z ¼ 0:07. —J—

o2 � o1ð Þ
min
¼ 77:70% o2 �o1ð Þ, —K— o2 � o1ð Þ

max
¼ 120:23% o2 �o1ð Þ.
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5. Conclusions

In this paper, the optimum vibrating shapes of an Euler–Bernoulli beam with constant volume of the
material are studied. This problem is reduced to a nonlinear optimization problem under equality and
inequality constraints as well as specified lower and upper bounds. From the presented analysis and the
numerical examples the following main conclusions can be drawn.
(a)
 An integrated solution procedure is presented for regulating the vibration of beams using shape
optimization.
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(b)
 The method is free of cross-sectional similarity constraints and permits the control of the rate of change of
the cross-section so that the Euler–Bernoulli theory is valid (no abrupt change of the cross-section). These
inequality constraints are converted to simple lower and upper bounds in order to improve the
optimization procedure.
(c)
 The cross-section satisfies inequality constraints resulting from serviceability requirements for the beam,
e.g. the cross-section should not be less than a certain value.
(d)
 The solution procedure of the free vibration problem of a beam with variable mass and stiffness properties
is achieved thanks to AEM. This method provides a direct solution of the differential equation of motion
and overcomes the shortcoming of FEM solutions, which require resizing of the elements and re-
computation of their stiffness and mass properties during the optimization process.
(e)
 The ratio omax
1 =o1 increases monotonically with the height rate of change Z. The opposite happens for the

ratio omin
1 =o1.
(f)
 In obtaining omin
1 the material is shifted away from stiff supports, while for omax

1 the opposite is true.
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